Introduction: Using Database Technology in Engineering

The use of database technology in the engineering computing environment differs from traditional data processing. Many database features developed for the more traditional applications can be transferred to the engineering environment. Some of these features take on new meaning, but many are only viewed from a different perspective in engineering applications. Engineering applications impose unique requirements on, but also can particularly benefit from, the following aspects of database technology:

- data representation;
- change management;
- cooperative processing.
The initial application of database technology to the engineering computing environment solves some of the simpler needs of engineering applications. Database management systems provide data representation capabilities that decouple the logical format for data representation from an inflexible file format. In this sense the database becomes a persistent data store which alleviates the need for each application to parse a file into the program’s internal data structures.

The sophisticated data representation capabilities needed to support engineering systems have only recently emerged in database systems. Engineering data contains complex interrelations and data types for which general purpose support has not been available until recently. The typical engineering application involves highly structured data and navigation of these structures is a more common operation than repeated processing of a single data structure. The more recent approaches to data representation provide a platform for direct expression and encoding of the rich semantics of data with respect to representation and constraints. Techniques for data representation which are particularly suitable for engineering are described in the section on the nature of engineering data.

Strategies for applying database technology to the broader category of needs for the entire engineering computing environment are also emerging. These strategies address the coordination of the evolution of a product’s development throughout its life-cycle. The introduction of database technology into engineering processes can provide the opportunity to improve the entire way of doing business for many industries. The technology is a key enabling factor for future directions in engineering and manufacturing automation and it is essential for concurrent engineering, flexible manufacturing, and enterprise integration.

Changes within the engineering environment are an inherent part of the engineering process. As a product is being developed, information needs are evolving along with it. Managing those changes is a crucial service that can be supported by a database management system. A reliable change management system is essential for reducing the time needed to engineer and manufacture a quality product. Database support for managing the changes within the environment are described in the section on managing changes.

The remainder of this article discusses the relevance of database technology in engineering applications as outlined above. Database technology is useful for all types of engineering applications. As the engineering computing environment increasingly grows more complex, the use of database technology will play a more significant role in the engineering process than is the practice today.

The database's functionality is optimal storage and retrieval of data, maintain correctness of the data, and maintaining consistency of the system at all times.
Chapter 1. On Database Models
(Brief classification based on Data Modeling)

1.1. Hierarchical Model:

In a hierarchical model data is represented as having a parent-child relationship among each other and is organized in a tree-like structure. The organization of data enforces a structure according the rule: “A Parent can have many Children but a Child can have only one Parent”. Thus, this model inherently forces repetitions of data at the child levels. The records have 1:N or more generally a "one–to–many" relationship between them. This was one of the first data base models to be used and implemented in IBM's Information Management System (IMS). Hierarchical model was the most intuitive way to represent real-world data but was not the most optimal one. This model was later replaced by a more efficient and optimal model called the “Relational Model” that we shall discuss next.

Fig. 1: The structure of the hierarchical data model

1.2. Network Model:

The network model can be seen as a generalization of the hierarchical model. In this model, each data object can have multiple parents and each parent object can have multiple children. This the network model forms a "lattice-type" structure in contrast to the "tree-like structure" of the hierarchical model. The network model represents real-world data relationship more naturally and under less constrained environment than the hierarchical model.

Fig. 2: The structure of the network data model
1.3. Relational Model:

The Relational Model was formulated by Edgar Codd and is one of the most influential model that has governed the implementation of some of the best known Database systems. The model is based on "first order predicate logic". In a representation such as $A = \{ x \mid P(x) \}$, $P(x)$ is the predicate that makes a descriptive statement about the elements of set A, such as "All positive integers less than 1000" results in a set $A = \{ 1, ..., 999 \}$. So, a predicate maps an "entity" to a "truth table". In the above example, 'x' is an entity and $P(x)$ is a mapping which determines whether 'x' belongs to set A or not.

Now, suppose that we have a huge domain and we need to make some statements that apply selectively to some or all members in the domain. The formal language that allows us to make such a statement is called "first order logic". In first order logic statements, a predicate either takes the role of a defining the "property" of an entity or the "relationship between entities". Further and in-depth description on the mathematical foundations of the relational model is beyond the scope of the present work.

So, in the relational model, data is represented using a set of predicates over a finite set of variables that model the belongingness of certain values to a certain sets and the constraints that apply on them. The relational model, owing to its strong foundations in mathematical formal logic is extremely powerful in representation and at the same time efficient in terms of storage requirements (by removing redundancies due to repeated data) and also speed of retrieval/storage.

1.4. Object-Relational Model:

The Object-Relational Model is similar to the relational model except for additions of object-oriented concepts in modeling. The data modeling is done using relational concepts while the object-oriented concepts facilitate complex modeling of the data and its relationship with the methods of manipulation/retrieval and storage. This is one of the newer and more powerful models of all the models discussed in this section.

There are lots of other models classifying databases based on the object-models such as Semi-structure Model, Associative Model, Entity-Attribute-Value Model etc., but a detailed study of each of these is beyond the present scope. The aim of the above classification was to attain a minimal understanding that would help us appreciate the design of performance analysis methods for Databases.
Chapter 2. Databases with Microsoft Excel: step by step Database Tutorial

2.1. About Excel of Microsoft Office Suite

Description: Excel is an electronic spreadsheet program whose options for manipulating numbers have made it the most popular spreadsheet program in the world. Its widespread use makes it easy to exchange files with almost anyone, or to display information in printed form. Because it is part of the Microsoft Office Suite, it can easily exchange data with that suite's database, word processing and presentation program.

MS Excel has the basic features of all spreadsheets, using a grid of cells arranged in numbered rows and letter-named columns to organize data manipulations like arithmetic operations. It has a battery of supplied functions to answer statistical, engineering and financial needs. In addition, it can display data as line graphs, histograms and charts, and with a very limited three-dimensional graphical display. It allows sectioning of data to view its dependencies on various factors for different perspectives (using pivot tables and the scenario manager). It has a programming aspect, Visual Basic for Applications (VBA), allowing the user to employ a wide variety of numerical methods, for example, for solving differential equations of mathematical physics, and then reporting the results back to the spreadsheet. It also has a variety of interactive features allowing user interfaces that can completely hide the spreadsheet from the user, so the spreadsheet presents itself as a so-called application, or decision support system (DSS), via a custom-designed user interface, for example, a stock analyzer, or in general, as a design tool that asks the user questions and provides answers and reports. In a more elaborate realization, an Excel application can automatically poll external databases and measuring instruments using an update schedule, analyze the results, make a WORD report or POWER POINT slide show, and e-mail these presentations on a regular basis to a list of participants.

Popularity of Excel: Excel gained momentum with the release of Windows 3.1 in 1992. This was also the first time Excel was included in Microsoft Office Suite. Since the release of Excel 4 in 1992, the program has gone through major upgrades and has been available for Windows and Mac operating systems.

2.2. Four Basic Uses of MS Excel

Calculations: You can set the calculations and formulas between variables only once. These numbers change automatically when you change a value, making it easy to try “what-if”-scenarios.

Data: You can sort and filter data for easy analysis. The powerful and convenient Conditional Formatting tool allows you to highlight information that meets certain criteria.

Charts: Excel allows to create many figures by displaying them as a colorful chart. You have full control over the color and appearance of bar graphs, pie charts and line charts.
Programming: In order to automate complicated entries and procedures you can use the built-in Visual Basic for Applications program language (VBA) to show dialog boxes, forms and button that process data with one click.

2.3. MS Excel as an Electronic Spreadsheet Program

A Spreadsheet? What does it mean? – A spreadsheet is an interactive computer application program for organization and analysis of information in tabular form. Spreadsheets developed as computerized simulations of paper accounting worksheets. The program operates on data represented as cells of an array, organized in rows and columns. Each cell of the array can contain either numeric or text data, or the results of formulas that automatically calculate and display a value based on the contents of other cells.

The user of any spreadsheet can make changes in any stored value and observe the effects on calculated values. Modern spreadsheet software can have multiple interacting sheets, and can display data either as text and numerals, or in graphical form.

In addition to the fundamental operations of arithmetic and mathematical functions, modern spreadsheets provide built-in functions for common financial and statistical operations. Such calculations as net present value or standard deviation can be applied to tabular data with a pre-programmed function in a formula. Spreadsheet programs also provide conditional expressions, functions to convert between text and numbers, and functions that operate on strings of text.

Spreadsheets have now replaced paper-based systems throughout the business world. Although they were first developed for accounting or bookkeeping tasks, they now are used extensively in any context where tabular lists are built, sorted, and shared.

Excel is a software program capable of creating and editing spreadsheets. For example, with a spreadsheet you could create your own payroll, balance your check book, organize a large amount of data in an easy to read format, and much more. This is done by adding, subtracting, multiplying, and dividing the values in the spreadsheet to view overall totals and create graphs based on that data.

So, MS Excel can be used for storing, organizing and manipulating data. When you look at the Excel screen (see Fig.1) you see a rectangular table or grid of rows and columns. The horizontal rows are identified by numbers (1,2,3,...) and the vertical columns with letters of the alphabet (A,B,C,...). For columns beyond 26, columns are identified by two or more letters such as AA, AB, AC.

The intersection point between a column and a row is a small rectangular box known as a cell. A cell is the basic unit for storing data in the spreadsheet. Because an Excel spreadsheet contains thousands of these cells, each is given a cell reference or address to identify it. The cell reference is a combination of the column letter and the row number such as A3, B16, AA345 and so on.
The data in a spreadsheet is entered into each of the cells, and some cells may also contain formulas for the processing of data from other cells.

The types of data that a cell can hold include numbers, text or formulas. Just as in math class, formulas are used for calculations usually involving data contained in other cells. Excel and other electronic spreadsheets include a number of built in formulas used for common tasks known as functions.

2.4. Excel is the powerful Multipurpose tool for various Data processing

Spreadsheets are often used to store various data. Formulas and functions that are used on this type of data include:

- Performing basic mathematical operations such as summing columns and rows of figures.
- Finding values such as profit or loss.
- Calculating repayment plans for loans or mortgages.
- Finding the average, maximum, or minimum values in a specified range of data.

![General look of Microsoft Excel 2010 spreadsheet](image)

Fig.3: general look of Microsoft Excel 2010 spreadsheet, a component of MS Office 2010

Other common operations that Excel can be used for include:

- graphing or charting data to assist users in identifying data trends.
- sorting and filtering data to find specific information.

The information gathered in a spreadsheet can easily be incorporated into electronic presentations, web pages, or printed off in report form.

So, we can assert the fact that one can hold properly four important things, such as:
- **Varied Data Documenting**

One of the primary uses of *Excel* is for documenting a business or organization's financial balances and transactions. Documenting such transactions enables a business to maintain financial records in a clear and organized manner. This allows for easier accounting, printing and sharing of accounting documents.

- **Powerful Tool for Analysis and Reports**

Excel also is widely used for various data analysis. The data recorded in spreadsheets can be calculated and compared for a business or organization to better understanding through analysis of its varied data using *Excel*'s tools.

One’s reporting is another experience of the primary uses of *Excel*. Yearly, monthly and daily financial reports can be made to present a company's earnings. Using an advanced reporting feature, such as a financial calendar featuring annual, monthly and daily earnings data, can be a highly efficient way of conveying data to investors and executives in an organization.

- **Charting of Data**

The charting of any kinds data is another primary use of *Excel*. The application features many ways to display data using various kinds of colored graphics for representing amounts and other values. There are line charts, pie charts, area charts, and many other kinds of charts available in *Excel*. The application is used by many organizations for graphical charting of financial and statistical data to better understand data in a visual manner.

2.5. Advantages of Microsoft Excel

As the industry standard for spreadsheet software, Microsoft *Excel* comes with many advantages to the new user or the user transitioning from another spreadsheet package. Over several decades, Microsoft has updated, expanded and adjustable *Excel* to keep up with both modern technology and the needs of spreadsheet users. Here are a few of the advantages of using Microsoft *Excel*.

Compatibility with other Excel Users

Excel users rarely need to worry about file compatibility when sending or receiving spreadsheets to or from colleagues. Due to the extraordinary popularity of Microsoft *Excel*, *Excel* users seldom need to worry about converting a spreadsheet to a different format.

Compatibility with other Data Manipulation Software

Again due to *Excel*'s popularity, *Excel* spreadsheets can be inserted, viewed, imported or manipulated from within a variety of other popular software applications, from other Microsoft Office products to third-party accounting and tracking programs.
Beyond the extensive help documentation included within MS Excel, users can also find many resources for help online, in libraries and in bookstores in the form of free tutorials, walk-through videos, support forums and comprehensive guides and how-to books.

Powerful Customization

Although these features are rarely seen by most users, Microsoft Excel offers tremendous customization through macros and Visual Basic add-ons, for those users with specific needs and programming experience.

Ease of Use

Excel is also widely considered to be one of the most easily accessible spreadsheet programs, with instinctive design, simple point-and-click functionality and helpful wizards to guide new users through the more complicated processes.

2.6. Microsoft Excel Database Files

At times, we need to keep track of information and a good place to this is in an Excel database file. Whether it is a personal list of phone numbers, a contact list for members of an organization or team, or a collection of coins, cards, or books, an Excel database file makes it easy to enter, store, and find specific information.

Microsoft Excel has built it tools to help you keep track of data and to find specific information when you want it. As well, with its hundreds of columns and thousands of rows, an Excel spreadsheet can hold an enormous amount of data.

The main steps in this tutorial are:

- Entering the Data – How data is stored
- Entering Data Correctly – How to avoid common errors
- Rows are Records, Columns are Fields – Organizing your data
- Creating the Table – Creating the database
- Using the Database Tools – Sorting and Filtering data
- Expanding the Database – Adding new records
- Completing the Database Formatting – Formatting the title and cell color

2.7. Data Definition and Entering Data in Excel

Definition: Data is information that is stored in any spreadsheet program such as Excel. Data is stored in cells in a worksheet. Generally, each cell holds a single item of data. In addition to being stored in the spreadsheet, the data can be used in calculations, displayed in graphs, or sorted and filtered to find specific information.
Types of data in Excel: Generally speaking, data type refers to the characteristics of the information stored in a worksheet cell. The two types of data most commonly used in spreadsheet programs are text and numbers.

Text data is usually words that are used for worksheet headings, names, and labels for identifying columns of data. Text data can contain letters, numbers, and special characters such as ! or &. By default, text data is left aligned in a cell.

Numbers can be used in calculations. By default, numbers are right aligned in a cell.

In addition to actual numbers – such as 10, 20, 30, 40 – Excel also stores dates and times as numbers. Problems can arise if numbers get stored as text data. This can prevent them from being used in calculations.

Formulas: a formula is a mathematical equation such as adding or subtracting two numbers. Formulas, which include spreadsheet functions, are usually considered to be Numbers but they are sometimes identified as a separate type of data.

Using AutoComplete to Enter Data

Excel’s AutoComplete feature is intended to simplify the task of data entry. When entering labels down a column, if you begin typing text that has previously been entered, Excel will display a black box containing the previous entry in the cell you are entering data into.

If you want to reenter the same text, press the Enter key and Excel enters the text for you. If you are entering a different word continue typing and the AutoComplete box will go away.

Limitations of AutoComplete are:

- It only works for data being entered in columns – it will not work if you are entering text across a row.
- It only works for columns of continuous data. As soon as an empty cell is left in a column, AutoComplete is interrupted.

Turning Off AutoComplete

If you do not want to use the AutoComplete feature: Click on Tools → Options in the menus to bring up the Options dialog box.

Click on the Edit tab
Remove the checkmark from the Enable AutoComplete for cell values option box.

Cells and cell references in Excel

Cell Facts

- Data is stored in cells in an Excel spreadsheet.
- Each small rectangle in a spreadsheet is a cell.
- A cell is the intersection point of a column and a row.

Column and Row Facts
- Columns run vertically in a spreadsheet and are identified by a letter.
- Rows run horizontally and are identified by a number.
- There are 65,536 rows, 256 columns, and over 16 million cells in a worksheet.

Cell Reference Facts
- To keep track of all these cells, each cell has a cell reference or address.
- A cell reference is a combination of the column letter and the row number.
- The active cell reference is shown in the name box above column A.
Chapter 3. Managing Databases with Microsoft Access

(Briefly about Microsoft Access)

Microsoft Access is a Relational Database Management System (RDBMS), designed primarily for home or small business usage. Access is known as a desktop database system because it's functions are intended to be run from a single computer. This is in contrast to a server database application (such as SQL Server), where it is intended to be installed on a server, then accessed remotely from multiple client machines.

Microsoft (or MS) Access is a software package that you install just like any other software package, and is bundled as part of the Microsoft Office Suite.

Access versus Excel

You may be wondering what the benefits of using Access are compared with using an Excel spreadsheet. Well, it really depends on what you want to do with the data that you're storing and how much data you intend to store.

Excel is really great, but it is definitely not a database program. If you have played with the database functions that are built into Excel then you have all of the experience and motivation that you need to graduate to one of several much better, more powerful, and easier to use database programs.

Excel may be fine if you've only got a small amount of data, and if you don't have many attributes against each piece of data. It may be fine if you don't have much in the way of relational data across multiple worksheets. Once you start storing many attributes against each piece of data, and perhaps you find yourself repeating information across multiple worksheets, then it's time to start using Access (or another database system if you prefer).

A spreadsheet program like Excel makes these tasks relatively easy to do. Also, programs like Excel organize the data into rows and columns, making your data easier to comprehend: it looks like it is shown at the Fig. 4 a.

A better option would be to store the same data in a database table using specialized database software, such as Microsoft Access: it looks like it is shown at the Fig. 4 b. So, one can compare and see the similarities in displaying of information. You may be wondering what the difference is between the last two examples (Excel vs Access). After all, both examples have the data organized into rows and columns.

There are many differences between spreadsheet software and database software. The rest of this tutorial will show you why database software is a much better option for creating databases.
Another important reason for using Access over Excel is, if you need to generate a lot of queries and reports. Access is much better suited for doing this compared to Excel.

Microsoft Access Database File Extension

When you create (and save) a database in Microsoft Access, the database is saved with a .mdb extension. This is the file extension you will use the most, when developing Access databases. Once you've established your database, you also have the option of saving it as an MDE file, which gives you some benefits over the MDB file. An MDE file uses a .mde extension.
Microsoft Access: brief “as it used” Tutorial

Fig. 5: The main Access view after opening it up

This is the main screen you’ll see when opening up Access to view an existing database. The outer part is the database management system and it’s menu, the middle part is the actual database. In this example, the database is called "dateSite" and has 20 tables. If you were to open a different database, the name of the database would be different and you would see different tables, but the available options would be the same (i.e. Tables, Queries, Forms, Reports, Macros, Modules, Open, Design, New).

Some of these options are common across all database management systems. All database systems allow you to create tables, build queries, design a new database, and open an existing database.
Microsoft SQL Server

Microsoft SQL Server is a more robust database management system than Access. While Access is better suited to home and small office use, SQL Server is more suited to enterprise applications such as corporate CRMs and websites etc (see Fig. 6).

The above screen is what you see when you open SQL Server through Enterprise Manager. Enterprise Manager is a built-in tool for managing SQL Server and its databases. In this example, there are 6 databases. Each database is represented down the left pane, and also in the main pane (with a "database" icon).
Which Database System to Use?

If you are using a database for home or small office use, MS Access or Filemaker should be fine. If you need to create a database driven website, then you're better off using a more robust system such as SQL Server, Oracle, or MySQL.

The examples in this tutorial use MS Access. If you don't have Access, you should still be able to follow the examples. The tasks we perform are the same tasks you would need to perform regardless of which database management system you use. The key goal with this tutorial is to provide you with an overview of what is involved in creating and maintaining a database.

Creating a Database

With database management systems, many tasks can be done either via programatically or a user interface. Creating databases is no exception.

Option 1: Programatically

Many database administrators (DBAs) use Structured Query Language (SQL) to perform many of their database tasks. To enter SQL, you need to open an interface that allows you to enter your code. For example, if you use SQL Server, you would normally use Query Analyzer. The following example is the basic code for creating a new database. Parameters can be added to this example if your requirements are more specific.

Note: This example assumes you know how to use your database system to run scripts like this. If you don't you, will probably find it easier to use the user interface method (below).

Option 2: User Interface

Most database systems make it very easy to create a database via a user interface. Generally, it's just a matter of selecting an option from a menu, then providing a name for your database. The following examples demonstrate how to create a database in Microsoft Access.

1. From the "File" menu, click on "New Database":

The workbook was compiled by A.O.Chepok, PhD in Solid State Phys., MSc in Comp. Sci., 2013
2. Choose "**Blank Database**" (MS *Access* also gives you the ability to choose from a template, but we'll just use a blank database here):

![Microsoft Access dialog box](image)

3. Choose a location to save the database:

![File New Database dialog box](image)
Your New Database

Once you've completed the above tasks, you should see a blank database, like this:

We know this database is blank because it doesn't have any tables. If it did, you would see these tables in the middle pane of the table tab. Now that we have our blank database, we can start adding some tables.
1. About Database Tables

Database tables will most likely be the area you'll become most familiar with after working with databases for a while. Now, before we go ahead and start adding tables to our new database, let's have a look at what a database table actually is.

What is a Table?

In database terms, a table is responsible for storing data in the database. Database tables consist of rows and columns. In the following example, the second row is highlighted in black:

In the next example, the second column is highlighted in black. This column has been given a name of "FirstName":

![Database Table Example](image)
A row contains each record in the table, and the column is responsible for defining the type of data that goes into each cell. Therefore, if we need to add a new person to our table, we would create a new row with the person's details. OK, now let's go ahead and create a table.

2. Creating Database Tables

With database management systems, you need to create your tables before you can enter data. Just as you can create a database programatically, you can create your tables programatically too.

Option 1: Programatically

The following is an example of creating a new table. Note that we are specifying the name of the table, the name of each column, and the data type of each column. More parameters can be added to this example if your requirements are more specific.

Code

```sql
CREATE TABLE Individual
(
    IndividualId int,
    FirstName Varchar(255),
    LastName Varchar(255),
)
```

Option 2: User Interface

Database management systems usually have a "Design View" for creating tables. Design view enables you to create the names of each column, specify the type of data that can go into each column, as well as specifying any other restrictions you'd like to enforce. Restricting the data type for each column is very important and helps maintain data integrity. For example, it can prevent us from accidentally entering an email address into a field for storing the current date.

More parameters can be added against each column if you require them. For example, you could specify a default value to be used (in case the field has been left blank by the user). When you create a table via the user interface (or design view), depending on which database system you use, you should see something like this:
Once you've created your table in "design view", you can switch to "datasheet view" to see the resulting table. You should see something like this:
OK, so this is a blank table - it doesn't have any data yet. What we have is a table that contains the columns required before we can enter any data. So, now that we have a blank table, let's look at how to add data.

3. Adding Data to a Database

There are a number of ways you can enter data into a database table. The method you choose will largely depend on your context. You will need to choose from the following methods:

- Direct entry
- Form
- Structured Query Language (SQL)
- Website or other application

Here's an explanation of those methods.

Direct entry

You can type directly into the table while it's in **Data Sheet** view. Initially, this may seem like the quickest and easiest method, but it's not suitable if you have lots of data, and/or if non-technical users need to enter data.
Form

If you use a desktop database program (such as MS Access), you can set up a form, so that non-technical users can enter data into the form. Once they submit the form, the data is automatically inserted into our table. The form could insert data into multiple tables too - saving you from having to open up each table to manually insert the data.

Most enterprise database systems don't have the ability for setting up a form. This is probably because they're designed for larger scale applications with hundreds, thousands, or even millions of users. In this environment, a form would be created through other means (for example, using HTML). Applications such as Access provide a form wizard, which steps you through the process to building a form.

4. Relational Database Design

Most popular database management systems are relational systems, and are usually referred to as Relational Database Management Systems (RDBMS). What this means is that their databases can contain multiple tables, some (or all) of which are related to each other. For example, consider the following screenshot:
In this example, the database has 20 tables. Each table serves a specific purpose. This enables us to organize our data much better. It can also help us with the integrity of our data.

Using the example above, the Individual table can hold data that is strictly about the individual. The City Table can hold a list of all cities. If we want to know which city each individual lives, we could store a "pointer" in the Individual table to that city in the City Table.
This example (shown above) demonstrates the relationship between the Individual table and the City Table. The individuals in the "Individual" table live in cities that are defined in the "City" table. Therefore, we can cross-reference each "Individual" record with a "City" record.

How Does This Work?

Firstly, in the City table, each record has a *unique identifier*. A unique identifier is a value that is unique to each record. This identifier can be as simple as an incrementing number. So, in our City table, the first record has a number of 1, the second record has a number of 2, and so on.

Secondly, when entering each individual into the Individual table, instead of writing out the full city name in that table, we only need to add the city's unique identifier. In this case, the unique identifier is a number, so we enter this number into the "CityId" column of the "Individual" table.

The following screenshots demonstrate this:
So, by looking at both tables, we can determine that Homer lives in Sydney, Barney lives in Cairns, and both Ozzy and Fred live in Osaka. At this stage, nobody in our database lives in Queens-town or Dunedin.

Primary Keys and Foreign Keys

Primary keys and foreign keys are terms that you will become very familiar with when designing databases. These terms describe what role each of the columns play in their relationship with each other.

The column that contains the unique identifier is referred to as the *Primary Key*. So, in our City Table, the primary key is the *CityId* column.

A *foreign key* is the column in the other table that points to the primary key. Therefore, the *CityId* column in the Individual table is a foreign key to the *CityId* column in the City Table.

5. Database Driven Website

A database driven website is a website that has most of its webpage content in a database. Therefore, the website content isn't actually sitting in files on the server, it is sitting in tables and columns in a database. A website with its content stored on the file system is often referred to as a *static* website, whereas a database driven website is often referred to as a *dynamic*.

Content Management Systems

A website with dynamic content usually has a *CMS* (Content Management System) to assist the content providers in updating the website.

A CMS is usually provided in the form of an administration area where content providers need to log in before they can add content. Once logged in, they can create, update and delete articles. They may be able to upload files such as Word documents, PDF files etc. They might be able to upload images too. All of this content can be stored in the database. Some may be stored on the file system too though. For example, although documents and images can be stored in the database, there are sometimes reasons to store them on the file system. Performance is often a key reason. Database size is another.

Discussion Forums and Blogs

Discussion forums and blogs have become a popular feature for many websites. Most, if not all, forums and blogs are database driven. Users can register their details, then add content. When the user
clicks the "Submit" button, their details/content is inserted into the database. Then when someone de-
cides to view this content, it is read from the database using SQL (Structured Query Language).

Combination of Static and Dynamic

Some websites have a combination of static content and dynamic content. There could be any number of reasons for this. Often, smaller websites will be static. There's little need to configure a da-
tabase just to store a handful of webpages – much easier and cheaper to keep them as files on the server. Even websites like this might contain some added functionality such as a discussion forum, or a blog. In this case, the discussion forum or blog will need its content stored in a database.

Benefits of a Database Driven Website

Database driven websites can provide much more functionality than a static site can. Extended functionality could include:

- Enabling many (potentially non-technical) users to provide content for the website. Users can publish articles on the website without needing to FTP them to a web server.
- Shopping cart
- You can provide advanced search functionality that enables users to filter the results based on a given field. They can then sort those results by a field – say "Price" or "Date".
- Customized homepage
- You can allow your users to perform tasks such as registering for a newsletter, post questions to your forums, provide comments on a blog, update their profile, etc.
- Integration with corporate applications such as CRM systems, HR systems etc.
- Much more …

Creating a Database Driven Website

The most common tasks for database driven websites is inserting, updating, and deleting data. Some of these are the same tasks that you learned in this tutorial, however when using a database driven website, you need to use a different method to do these tasks. You need to use a programming language called SQL (Structured Query Language) to insert, update, and delete your data.
Don't worry, this is not as scary as it may sound. SQL is a very easy language to learn and, once you start using it, you will be thankful you took the time to learn it. In fact, you've already learned some basic SQL statements in previous lessons.

To create a database driven website, you need the following skills:

- You need to be able to build a static website HTML, and preferably CSS and JavaScript
- You need to be able to write basic code using a server side scripting language such as PHP, ColdFusion etc.
- You need to know how to write basic SQL
- You need to be able to design/build a database. If you need to learn about databases but missed the start of this tutorial.

6. Database Summary

You should now have a general understanding about databases and how they're used. This tutorial was intended for beginners trying to gain an understanding of databases. Databases are not like most other files and require a little bit of thought in order for you to understand the concept. If you have your own database management system installed, you should have a better understanding of where to start and what the various options mean.

What Next?

Most of the examples in this tutorial used MS Access. If you'd like to learn how to use MS Access, try performing several Laboratory works (see Appendix to the paper).

Also, you'll have noticed SQL coming up throughout this tutorial. SQL is a very powerful language, but is also very easy to learn. You can achieve a lot even by learning just a little SQL. After a little practice you will be able to do things such as:

- Select only the columns you want from a query
- Query multiple tables
- Create tables & databases programatically
- Use built-in functions
- Create an index and more...
Chapter 4. Basics of SQL queries
(this chapter describes some practices for using SQL language for relational data querying, reports creating and modifying)

Structured Query Language (SQL)

You can use a programming language called SQL to insert the data (we could also have used SQL to create the database and tables if we'd wanted to). One advantage of this is that you can save your SQL script for re-use. This could be handy if you need to insert the data into multiple databases. It's also useful to create scripts that insert "lookup" data – this is generally a base set of data that never changes (such as Countries, Cities, etc). If you ever need to rebuild your database, you can simply run your ready made script against it (which saves you from manually re-entering the data).

Website or other application

You could build a program that uses the database to store and retrieve data. The person entering the data doesn't need to have direct access to the database. They don't even need to have database software. By using SQL, your database could be part of a larger application – such as a website. This is probably the most common method of adding data to a database. If you've ever registered with a website, your details would have been inserted into a database using this method.

Querying a Database

Queries are one of the things that make databases so powerful. A "query" refers to the action of retrieving data from your database. Usually, you will be selective with how much data you want returned. If you have a lot of data in your database, you probably don't want to see everything. More likely, you'll only want to see data that fits a certain criteria.

For example, you might only want to see how many individuals in your database live in a given city. Or you might only want to see which individuals have registered with your database within a given time period. As with many other tasks, you can query a database either programatically or via a user interface.
Option 1: Programatically

The way to retrieve data from your database with SQL is to use the "SELECT" statement. Using the SELECT statement, you can retrieve all records...

```
Code
SELECT * FROM Individual
```

...or just some of the records:

```
Code
SELECT * FROM Individual
WHERE FirstName = 'Homer'
```

The 2nd query only returns records where the value in the "FirstName" column equals "Homer". Therefore, if only one individual in our database had the name "Homer", that person's record would be shown. It may look like this:

![Individual Query: Select Query](image)

SQL is a powerful language and the above statement is very simple. You can use SQL to choose which columns you want to display, you could add further criteria, and you can even query multiple tables at the same time. If you're interested in learning more about SQL, be sure to check out our SQL tutorial after you've finished this one!

Option 2: User Interface

You might find the user interface easier to generate your queries, especially if they are complex. Database management systems usually offer a "design view" for your queries. Design view enables you to pick and choose which columns you want to display and what criteria you'd like to use to filter the data. Here's an example of design view in Microsoft Access:
When using design view, the database system actually uses SQL (behind the scenes) to generate the query.
Appendix A

Instructions to the Lab. #1

Topic: “The basic functions of Excel aimed at editing, sorting and re-arrangement of Databases”

1. Before start the Laboratory work (Lab. #1) you need to get the personalized initial database kernel1.

2. You should familiarize yourself with the received dataset before you start to perform the task accordingly the Laboratory work, and after that you have to complete the information by filling with assumed data up to 8-10 rows (lines of the table) per sample.

3. Thereafter you have to perform some manipulations with the updated information according the plan of Lab. #1.

1. Editing information in MS Excel databases

In order to editing information there is command FORM in MS Excel. The command allows us to view, edit and check individual cell and lines of any columns with specific data.

Activating the Command occurs in two stages: 1) a User have to click (to activate) 1 cell of the row he needs, then Excel will focused its efforts on the specific row of the table; 2) after the cell activating a User have to use two electronic buttons Data → FORM to enable chosen procedure. After that Excel shows the dialog window to view and/or edit the database entries.

Exercise #1: Update the data records of your variant with the command Form with your own information per sample.

Exercise #2: With electronic Excel buttons Format → Column → Hide/Show edit the structure the database. Before the table structure editing one has to highlight (to select) certain columns and use proper buttons.

2. Sorting (ordering) the Data

Sorting procedure of any data in Excel table in ascending or descending order by any criterion one can realize with electronic buttons Data → Sorting. To realize the procedure one has to select (highlight) all the cells and use the sorting criterion he needs.

Exercise #3: Re-arrange information of different columns.

1 see your variant for personal data set
3. AutoFilter Tools

Data filtering aimed to show (to select) only the information that meet the specified criteria. In order to control filtering one can enable the electronic buttons Data → Filter → AutoFilter. Selection of data can be carried out as well as by one criterion and by many criteria.

The AutoFilter procedure can be cancelled. Besides, AutoFilter Tool helps to find empty cells in the Excel tables.

Exercise #4: Find and show the list of employees of “# …” Dept. of the “ABC” Corporation.

What to do in order to perform this Lab:

1. Sort the students' Surnames in alphabetical order (it is the basic List #1);
2. Find (by using of Filter tool) Surname & Name of the Captain of the group, and after finding highlight the cells with any colour you prefer;
3. Following the Session results and based on the current test scores calculate the grade point average (GPA) to the nearest hundredth (use Format tool);
4. Based on the results of the last Session calculate the average score of the group;
5. Based on the results of the last Session (see GPA) draw grants for the students;
6. Calculate the monthly fund of grants for the group;
7. Based on the student's average score compile a list of student's rating (it is the List #2);
8. Find Surname & Name of the student(s) who has MIN average score after the last Session;
9. Find Surname & Name of the student(s) who has MAX average score after the last Session;
10. Compile a list of student's which average score are within the interval: for example [Aver. Score of the group ± 15%].

Note: It is recommended to show the results of each item on the same worksheet.

Results of Summer Examinations (years of 2013/2014)

<table>
<thead>
<tr>
<th>No n/n</th>
<th>Surname</th>
<th>Name</th>
<th>Solid State Electronics</th>
<th>Higher Mathematics</th>
<th>Programming</th>
<th>Physics</th>
<th>History</th>
<th>Aver. Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grant</td>
</tr>
<tr>
<td>1</td>
<td>Baffreau</td>
<td>Leonard</td>
<td>94</td>
<td>97</td>
<td>72</td>
<td>78</td>
<td>63</td>
<td>80,80</td>
</tr>
<tr>
<td>2</td>
<td>Bidlingmaier</td>
<td>Melvin</td>
<td>88</td>
<td>62</td>
<td>88</td>
<td>81</td>
<td>82</td>
<td>75,20</td>
</tr>
<tr>
<td>3</td>
<td>Bowling</td>
<td>Barbara</td>
<td>96</td>
<td>83</td>
<td>87</td>
<td>80</td>
<td>74</td>
<td>81,80</td>
</tr>
<tr>
<td>4</td>
<td>Burt</td>
<td>Helen</td>
<td>67</td>
<td>83</td>
<td>76</td>
<td>80</td>
<td>82</td>
<td>73,60</td>
</tr>
<tr>
<td>5</td>
<td>Chusty</td>
<td>Ernest</td>
<td>88</td>
<td>57</td>
<td>51</td>
<td>80</td>
<td>74</td>
<td>74,60</td>
</tr>
<tr>
<td>6</td>
<td>Cooper</td>
<td>Francis</td>
<td>63</td>
<td>79</td>
<td>61</td>
<td>83</td>
<td>61</td>
<td>69,40</td>
</tr>
</tbody>
</table>

Fig. A-1: Example of how the worksheet should look like after step №5.

2 see your variant for personal data
Appendix B

Instructions to the Lab. #2

Topic: “Primary information processing. Reporting on request”

1. Before start the Laboratory work (Lab.#2) you have got the personalized initial database kernel (see Lab.#1).

2. You should familiarize yourself with the received dataset before you start to perform the task accordingly the Laboratory work Instructions.

3. Thereafter you have to perform processing the received information accordingly the plan of Lab.#2.

Being based on the initial information you received (see your version of the “Personal Database of the ABC ltd. employee” you have:

- to understand the Database structure;
- to understand the meaning of the query and make reports on them;
- to get by means of Excel tools the set of required plots (diagrams) based on the processed data (so called secondary data).

Based on the fact that in the current month the Company’s management decided to pay each employee his bonus additionally to his salary according to his “personal” rate (see the Database).

The List of tasks linked to the primary Information processing

Being based on these data:

- calculate bonuses (in UHR) which are accrued to each employee of the Company in the current month on the results of the previous period, and (see below)
- also calculate the total amount payable to the employee for the current month including accrued bonuses (= find total monthly earns for each person).
- calculate the average salary of employees for each Department and for the Company as a whole.
- calculate the age (one’s full years number) of each employee for the current year (the result should be rounded to the nearest whole number).
- calculate the average age of the employees of each Department and calculate the average age of the employees of the Company as a whole.
The List of Requests for compiling appropriate Reports:

- Find out how many employees of the Company have the following number of children: “0” (= no one), “1” (= only one), “2” (= only two), “3” (= only three), etc. up to a maximum. Obtained results are presented in a Table (see Table #1):

<table>
<thead>
<tr>
<th>children (persons)</th>
<th>number of employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- Get information about the Dept. employee which salary is different from the average salary in this Department (and in the Company – a separate List) no more than 15%.
- Get information about the Dept. employee which salary is more than the average salary in this Department (and in the Company – a separate List).
- Get information about the Dept. employee which salary is less than the average salary in this Department (and in the Company – a separate List).
- For each Dept. of the Company: make a Schedule of Birthday celebration (sort the List by Dept., within each Dept. – by month of Birth, within each month – by date of Birth).

For submitting one’s reports (usually reports presented in the form of list or table) one has to copy received info to another Excel Worksheet or another Workbook.

on Graphic jobs:

- Compile a pie chart showing the average monthly salary of employees by each Department.
- Compile a histogram based on the Table #1 data.

The resulting graphics (charts) shall be drawn up properly: the graphs and their axes must be signed, if necessary, provide the graphs with legends.

The list of Notions to perform Lab.#2:

Notion #1. The average values in Excel are automatically computed using some built-in routines: follow “Functions” (or “Another Functions”) → “Statistical” (see Fig. B-1).

Notion #2. In Excel the required amount of data in the list are automatically computed using built-in routines: follow “Functions” (or “Another Functions”) → “Statistical”.

The workbook was compiled by A.O.Chepok, PhD in Solid State Phys., MSc in Comp. Sci., 2013
Notion #3. All the financial data one has to present in the format of "****, **" and specify the units of measurement.

Notion #4. All the data on the average age one has to present in the format of "**, **" and specify the units of measurement.

Notion #5. The task "Get information about the employees ..." means getting lists of all available personal information from the column "Surname" to the "Cell phone operator" inclusively.

Fig. B-2: The main library of functions of Excel.
Appendix C

Instructions to the Lab. #3

Topic: “Operating with databases in MS Access. Step 1: Tables creating”

Part 1: Creating database Tables in Access

(see previous Information and Instructions according to MS Access)

To design a database, you must know its structure: you have to know the structure of the information to be presented in this database.

So, within the framework of the present Lab.#3 we will design two simple databases – “My personal Library” and “The List of Unemployed Persons”.

1. Creating the database Table#1 named “My personal Library”

Let the database "My personal Library" contains information about all of somebody’s books. Let it be known the following information about each of his/her books:

- Author’s name and Surname;
- the Book Title;
- year of Edition;
- a Title of Publisher;
- the date of purchasing of the Book;
- Topics (thematic section).

Let all of this information will be contained in the three tables: the Parent Table#1 – “Book Publishers”, the Parent Table#2 – “Topics”, and the Child Table #3 – “Books”.

The Parent Table#1 – “Book Publishers”:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Size</th>
<th>Key field</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Book Publisher’s code</td>
<td>Number</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>The Publisher Title</td>
<td>Text</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Contents of the Table #1:

<table>
<thead>
<tr>
<th>The Book Publisher’s code</th>
<th>The Publisher Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DP Publications</td>
</tr>
<tr>
<td>2</td>
<td>Book Club Associates</td>
</tr>
<tr>
<td>3</td>
<td>Chapman & Hall</td>
</tr>
<tr>
<td>4</td>
<td>BlackWell</td>
</tr>
<tr>
<td>5</td>
<td>The Hambledon Press</td>
</tr>
</tbody>
</table>
the Parent Table #2 – “Topics”

Structure of the Table #2:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Size</th>
<th>Key field</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Topic’s code</td>
<td>Number</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>The Topic’s header</td>
<td>Text</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Contents of the Table #2:

<table>
<thead>
<tr>
<th>The Topic’s code</th>
<th>The Topic’s header</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Educational literature</td>
</tr>
<tr>
<td>2</td>
<td>Rest, Leisure</td>
</tr>
<tr>
<td>3</td>
<td>Cooking and Recipes</td>
</tr>
<tr>
<td>4</td>
<td>Lyrics</td>
</tr>
<tr>
<td>5</td>
<td>Hobby</td>
</tr>
</tbody>
</table>

the Child Table #3 – «Books»

Structure of the Table #3:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Size</th>
<th>Key field</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Book code</td>
<td>AutoNumber</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Author’s name and Surname</td>
<td>Text</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Book Title</td>
<td>Text</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of Edition</td>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Publisher Code</td>
<td>Number</td>
<td></td>
<td></td>
<td>The data from Table #1 – “Book Publishers”</td>
</tr>
<tr>
<td>The Topic’s Code</td>
<td>Number</td>
<td></td>
<td></td>
<td>The data from Table #2 – «Topics»</td>
</tr>
<tr>
<td>the date of purchasing of the Book</td>
<td>Date/Time</td>
<td>(short date format)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contents of the Table #3:

<table>
<thead>
<tr>
<th>The Book code</th>
<th>Author’s name and surname</th>
<th>The book Title</th>
<th>Year of Edition</th>
<th>The Publisher Code</th>
<th>The Topic’s Code</th>
<th>the date of purchasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>John Perrin</td>
<td>Taxation Policy & Practice</td>
<td>1995</td>
<td>3</td>
<td>1</td>
<td>21.08.1996</td>
</tr>
<tr>
<td>3</td>
<td>T. Lucey</td>
<td>Quantitative Techniques</td>
<td>1996</td>
<td>1</td>
<td>1</td>
<td>03.07.2002</td>
</tr>
<tr>
<td>4</td>
<td>Richard Hayman</td>
<td>Riddles in Stone</td>
<td>1997</td>
<td>5</td>
<td>5</td>
<td>15.06.2000</td>
</tr>
<tr>
<td>5</td>
<td>Edward Gibbon</td>
<td>The Decline and Fall of the Roman Empire</td>
<td>1972</td>
<td>2</td>
<td>5</td>
<td>04.09.1987</td>
</tr>
</tbody>
</table>

2. Creating the database Table #2 «The List of Unemployed Persons»

Let the database "The List of Unemployed Persons" contains information about the registered unemployed people who live in certain settlement (populated area). At the same time one knows the following information about of each such person.

- Surname;
- Date of Birth;
- home Phone No;
- cell Phone No;
- Education;
- Total work experience;
- Last Position;
- Desired Position;
- Address (Populated Area).

All collected information will be contained in three tables: the Parent Table #1 – “Populated Area”, the Parent Table #2 – “Education”, and the Child Table #3 – “Unemployed Persons”.

the Parent Table #1 – «Populated Area»

Structure of the Table #1:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Size</th>
<th>Key field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populated Area code</td>
<td>Number</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Populated Area</td>
<td>Text</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Contents of the Table #1:

<table>
<thead>
<tr>
<th>Populated Area code</th>
<th>Populated Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primorsky distr.</td>
</tr>
<tr>
<td>2</td>
<td>Suvorovsky distr.</td>
</tr>
<tr>
<td>3</td>
<td>Kyivsky distr.</td>
</tr>
<tr>
<td>4</td>
<td>Malinovsky distr.</td>
</tr>
</tbody>
</table>

the Parent Table #2 – «Education»

Structure of the Table #2:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Size</th>
<th>Key field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education branch code</td>
<td>Number</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Education branch</td>
<td>Text</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Contents of the Table #2:

<table>
<thead>
<tr>
<th>Education branch code</th>
<th>Education branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Secondary Education</td>
</tr>
<tr>
<td>2</td>
<td>Secondary Special Education</td>
</tr>
<tr>
<td>3</td>
<td>Higher Education</td>
</tr>
</tbody>
</table>
the Child Table #3 – «Unemployed Persons»

Structure of the Table #3:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Size</th>
<th>Key field</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surname</td>
<td>Text</td>
<td>25</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Date of Birth</td>
<td>Date/Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(short date format)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Phone No.</td>
<td>Text</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Phone No.</td>
<td>Text</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education branch code</td>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total work experience</td>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Position</td>
<td>Text</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desired Position</td>
<td>Text</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populated Area (Address) code</td>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contents of the Table #3:

<table>
<thead>
<tr>
<th>№ Record Number</th>
<th>Surname</th>
<th>Date of Birth</th>
<th>home Phone No.</th>
<th>cell Phone No.</th>
<th>Education branch code</th>
<th>Total work experience</th>
<th>Last Position</th>
<th>Desired Position</th>
<th>Populated Area code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix D

Instructions to the Lab. #4

Topic: “Operating with Tables & Forms in MS Access”

Part 1: Creating database Tables in Access

(see previous Information and Instructions according to MS Access)

As it is usual, to design a database, you must know its structure: you have to know the structure of the information to be presented in this database.

1. Creating the database Table#1 “My personal Library”

So, one has to create four database tables with the following names: “The Staff Position Directory”, “The Dept. Directory”, “Basic Personal Data of Employees” and “Additional Personal Info about Employee”.

The Table#1 – “The Staff Position Directory”:

Structure of the Table #1:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code of Position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position Title</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As you can see, the **Primary Key** marker is placed next to the 1st item – the **Code of Positions** by name. After the creation of the Table structure is finished one has to fill the table with proper data, for example, as follows.

Contents of the Table #1:

<table>
<thead>
<tr>
<th>Code of Position</th>
<th>Position Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td>2</td>
<td>Chief Accountant</td>
</tr>
<tr>
<td>3</td>
<td>Head of Dept. #1 (Accounting Dept.)</td>
</tr>
<tr>
<td>4</td>
<td>Head of Dept. #2 (Personnel Dept.)</td>
</tr>
<tr>
<td>5</td>
<td>Head of Dept. #3 (Technical Dept.)</td>
</tr>
<tr>
<td>6</td>
<td>Head of Dept. #4 (Cargo Dept.)</td>
</tr>
<tr>
<td>7</td>
<td>Head of Dept. #5 (Electric Dept.)</td>
</tr>
<tr>
<td>8</td>
<td>Personnel Officer</td>
</tr>
<tr>
<td>9</td>
<td>Accountant</td>
</tr>
<tr>
<td>10</td>
<td>assistant accountant</td>
</tr>
<tr>
<td>11</td>
<td>engineer</td>
</tr>
<tr>
<td>12</td>
<td>electrical engineer</td>
</tr>
<tr>
<td>13</td>
<td>technician</td>
</tr>
<tr>
<td>14</td>
<td>economist</td>
</tr>
<tr>
<td>15</td>
<td>Driver №1</td>
</tr>
<tr>
<td>16</td>
<td>Driver №2</td>
</tr>
<tr>
<td>17</td>
<td>Serviceman №1</td>
</tr>
<tr>
<td>18</td>
<td>Serviceman №2</td>
</tr>
</tbody>
</table>
The Table #2 – “The Department Directory”

Structure of the Table #2:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code of Department</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Name</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As you can see, the Primary Key marker is placed next to the 1st item – the Code of Department by name. After the creation of the Table structure is finished one has to fill the table with proper data, for example, as follows.

Contents of the Table #2:

<table>
<thead>
<tr>
<th>Code of Department</th>
<th>Department Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Administration</td>
</tr>
<tr>
<td>2</td>
<td>Accounting Department</td>
</tr>
<tr>
<td>3</td>
<td>Personnel Department</td>
</tr>
<tr>
<td>4</td>
<td>Technical Department</td>
</tr>
<tr>
<td>5</td>
<td>Electric Department</td>
</tr>
<tr>
<td>6</td>
<td>Cargo Department</td>
</tr>
</tbody>
</table>

The Table #3 – « Basic Personal Data of Employees »

Structure of the Table #3:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee ID number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surname & Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Hiring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employees Photo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As you can see, the Primary Key marker is placed next to the 1st item – the Employee ID number by name. After the creation of the Table structure is finished one has to fill the table with proper data. Notion: filling the table with proper data we will realize using Form Wizard tool.

The Table #4 – «Additional Personal Info about Employee»

Structure of the Table #4:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Field Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Birth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marriage Status</td>
<td>Number of Children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As you can see, the **Primary Key** marker is placed next to the 1st item – the **Employee ID number** by name. After the creation of the Table structure is finished one has to fill the table with proper data. **Notion:** filling the table with proper data we will realize using **Form Wizard** tool.

**

Part 2: Creating Relationship setting between the Tables

To create relationships between the database Tables MS *Access* has the special dialog window called **Relationships**. This window one can open by clicking on the **button (see Tools)** or by the command **Service → Relationships** (see Fig. D-1):

![Fig. D-1: Appearance and location of the Relationships electronic button.](image)

Double clicking upon the **Relationship line** between the Tables will cause **Edit Relationships** window appearance. From this window, select different fields if necessary and select an option from **Enforce Referential Integrity** option button if necessary. These options give *Access* permission to automatically make changes to referential tables if key records in one of the Tables is deleted. Check the **Enforce Referential Integrity** box to ensure that the relationships are valid and that the data is not accidentally deleted when data is added, edited, or deleted. Then click **Create** to create the link. After that one can see the scheme of Tables and the relationships between them.

Notion: you have to set some relational links between the **DataTables** as follows (see Fig. D-2):

![Fig. D-2: Establishment appropriate relational links between the DataTables (step 1).](image)
The next step – step 2 – is filling the table “Relation Changing” (see Fig. D-3).

![Image of Fig. D-3: Establishment appropriate relational links between the DataTables (step 2).](image1)

The next step – step 3 – is filling the table “Relation Changing” (see Fig. D-4).

![Image of Fig. D-4: Establishment appropriate relational links between the DataTables (step 3).](image2)

Part 3: Form Creating and Editing

In order to fill the database with proper information you must perform the following steps as it shown below. **Notion:** all the specific information you need to come up. Choose **Form Wizard** : it is step 4 (see Fig. D-5), then we have to fill the proper table – step 5 and step 6 – aimed to compile the table we need (Fig. D-6 and Fig. D-7).
Fig. D-5: Form creating procedure within *Access* (step 4).

Fig. D-6: Form creating procedure within *Access* (step 5).

Fig. D-7: Form creating procedure within *Access* (step 6).
The next phase is a series of steps for selection of the desired style of the table: one can find the desired style of the form from the standard set. See the figures beneath as an example (Fig. D-8 and Fig. D-9).

Fig. D-8: Form creating procedure within Access (step 7): selection of the desired style of the form from the standard set.

Fig. D-9: Form creating procedure within Access (step 8).
Finally, after you complete filling the data you have to apply the form page with any picture (or an appropriate photo) you wish to illustrate the imaginary person, for example, like this:

![Fig. D-10](image1.png)

Fig. D-10 : Particular Form which is filled with the necessary data without OLE objects.

![Fig. D-11](image2.png)

Fig. D-11 : Particular Form which is filled with the necessary data with additional OLE object.
Appendix E

Instructions to the Lab. #5

Topic: “Operating with Queries & Reports in MS Access”

Part 1: Creation of specific Query series based on the database in Access.

(see previous Information and Instructions according to MS Access)

The main idea of the Lab. Work:

It is necessary to collect and output information about:

- employees whose age does not exceed 30 years;
- work experience of employees at the company;
- employees, who live in a certain area (district) of the city;
- employees hired to work at the company in a given period.

It is also necessary to make some calculations within MS Access and create several statements:

- document on accrual of the personal premium according the rate of 15% of his salary;

The Query #1: The list of employees which age is not greater than 30 years

To create a query one has to activate the Database window, then to choose creation of a query in Design mode. So your database should already be open with the Database Window showing. It can be done by doing this way: the main Access window → Query → Create query in Design View (see Fig. E-1).

Fig. E-1: on a query in Design mode.

The Show Table window will appear, allowing you to select the source table or query to be used. The Query design window will be visible behind that.
Make sure the desired table is selected as shown in Fig. E-2 and click Add (you can also double-click the name of a table to add it). Click Close button to close the Show Table window and you will now be in the Query Design window.

Fig. E-2: selection the desired table.

The top section of the window (see Fig. E-3) shows a list of fields in the source table(s). The bottom half, referred to as the QBE Grid (Query-by-Example), is where you can select the fields and criteria essential to the query results.

Fig. E-3: The top section of the window shows a list of fields in the source table(s).
Selecting Fields for Query Output

Selecting fields to be included in the query results can be done in several different ways. In the following exercises you will learn different ways of doing it. The bottom half of the query design window is where information about the currently selected fields will be kept.

Choose the table **Basic Personal Data of Employees** and supply the **Query1: Select Query** table with appropriate information according to your demand (see Fig. E-4 as an example).

![Query Design Screen](image)

Fig. E-4: The basic elements of the query design screen: selected fields for Query Output.

Be attentive when filling in the query design screen: the upper pane should contain field lists for the tables on which the query is based, and the lower pane should contain the actual query definition. **Check the information you have just entered:** these fields will be used in the queries that will follow!

Running a query for execution

To perform a query one has to use the command **Query → Run** or the button ![Run Button](image) on the toolbar (see Fig. below):

![Running Query](image)

Fig. E-5.
The result of the query is displayed in the appropriate table, for example like this (Fig. E-6):

![Fig. E-6](image)

Part 2: Creating Reports based on specific Queries in Access.

It is necessary to solve three problems as follow:

- making reports on given databases according specific queries;
- editing (or formatting) the received reports;
- learn how to output the received reports to print.

Based on the data from two tables (“Basic Personal Data of Employees” and “Additional Personal Info…””) one has to create four reports with the specified fields and then edit them in order to be printed. So, it is necessary to compile 4 lists with data concerning to …

- employees whose age does not exceed 30 years; ← report #1
- work experience of employees at the company; ← report #2
- employees, who live in a certain area (district) of the city; ← report #3
- employees hired to work at the company in a given period ← report #4

Below we can see some steps which can lead us to our goal.

1. Choose the Reports menu.

(Once you've opened the main Access window, you'll be presented with the main database menu shown below. Go ahead and click on the "Reports" selection (Fig. E-7) and you'll see a list of the various reports Microsoft included in the sample database.)

2. Create a new report.

(Next step: go ahead and click on the "New" button (Fig. E-7) and we'll begin the process of creating a report from scratch.)

![Fig. E-7](image)

3 Remark: make these reports by the scheme “Reports → Create → Report Wizard”.

The workbook was compiled by A.O. Chepok, PhD in Solid State Phys., MSc in Comp. Sci., 2013
3. Select a creation method. For example, it will be the **Report Wizard** mode.

(The next screen that appears will ask you to select the method you wish to use to create the report. We're going to use the **Report Wizard** which will walk us through the creation process step-by-step. After you've mastered the wizard, you might want to return to this step and explore the flexibility provided by the other creation methods.)

4. Choose a table or query.

(Next we want to choose the source of data for our report. If you want to retrieve information from a single table, you can select it from the drop-down box below. Alternatively, for more complex reports, we can choose to base our report on the output of a query that we previously designed.)

5. Select the fields to include (Fig. E-8).

(Use the '->' button to move over the desired fields. Go ahead and select these fields. When you are satisfied, click the **Next** button.)

![Report Wizard](image.png)

Fig. E-8: Select the fields to include them within your report.

6. Select the grouping levels (Fig. E-9).

(At this stage, you can select one or more grouping levels to refine the order in which our report data is presented. Go ahead and simply click on the **Next** button to bypass this step. You may wish to return here later and experiment with grouping levels.)
7. Choose your sorting options (Fig. E-10).

(In order to make reports useful, we often want to sort our results by one or more attributes. Select this attribute from the first drop-down box and then click the Next button to continue.)
8. Choose the formatting options (Fig. E-11).

(In the next screen, we’re presented with some formatting options. We’ll accept the default tabular layout but let’s change the page orientation to landscape to ensure the data fits properly on the page. Once you’ve completed this, click the Next button to continue.)

![Chose Formatting Options](image)

Fig. E-11 : Chose Formatting Options

9. Select a report style (Fig. E-12).

(The next screen asks you to select a style for your report. Click on the various options and you’ll see a preview of your report in that style in the left portion of the screen. We’ll use the Corporate style for this report. Select this option and then click the Next button to move on.)

![Select a Report Style](image)

Fig. E-12 : Select a Report Style.
10. Add the title (Fig. E-13).

(*Access* will automatically provide a nicely formatted title at the top of the screen, with the appearance shown in the report style you selected during the previous step. Make sure that the “Preview the report” option is selected and click on Finish to see our report!)

![Report Wizard](image)

Fig. E-13 : Adding a Title

11. So, our report should look something like this (Fig. E-14).

![Employee Home Phone List](image)

Fig. E-14 : Our Finished Product (a similar kind of).

And finally, save the reports as “Report # …” by name.
Internet sources

Additional information can be seen at the following addresses:

10. https://www.lib.purdue.edu/find/databases